Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 155(Pt 9): 3045-3054, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19477900

RESUMEN

While establishing a nitrogen-fixing symbiosis with leguminous plants, rhizobia are faced with the problem of penetrating the plant cell wall at several stages of the infection process. One of the major components of this barrier is pectin, a heteropolysaccharide composed mainly of galacturonic acid subunits. So far, no enzymes capable of degrading pectin have been isolated from rhizobia. Here, we make an inventory of rhizobial candidate pectinolytic enzymes based on available genome sequence data and present an initial biochemical and functional characterization of a protein selected from this list. Rhizobium etli hrpW is associated with genes encoding a type III secretion system, a macromolecular structure that allows bacteria to directly inject so-called effector proteins into a eukaryotic host's cell cytosol and an essential virulence determinant of many Gram-negative pathogenic bacteria. In contrast to harpin HrpW from phytopathogens, R. etli HrpW possesses pectate lyase activity and is most active on highly methylated substrates. Through comparative sequence analysis, three amino acid residues crucial for the observed enzymic activity were identified: Trp192, Gly212 and Gly213. Their importance was confirmed by site-directed mutagenesis and biochemical characterization of the resulting proteins, with the tryptophan mutant showing no detectable pectate lyase activity and the double-glycine mutant's activity reduced by about 80 %. Surprisingly, despite hrpW expression being induced specifically on the plant root surface, a knockout mutation of the gene does not appear to affect symbiosis with the common bean Phaseolus vulgaris.


Asunto(s)
Glicina/genética , Liasas/genética , Liasas/metabolismo , Pectinas/metabolismo , Phaseolus/microbiología , Rhizobium etli/enzimología , Homología de Secuencia de Aminoácido , Triptófano/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Liasas/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Rhizobium etli/genética , Análisis de Secuencia de Proteína , Especificidad de la Especie , Simbiosis
2.
Proc Natl Acad Sci U S A ; 103(40): 14965-70, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-16990436

RESUMEN

Swarming motility is suggested to be a social phenomenon that enables groups of bacteria to coordinately and rapidly move atop solid surfaces. This multicellular behavior, during which the apparently organized bacterial populations are embedded in an extracellular slime layer, has previously been linked with biofilm formation and virulence. Many population density-controlled activities involve the activation of complex signaling pathways using small diffusible molecules, also known as autoinducers. In Gram-negative bacteria, quorum sensing (QS) is achieved primarily by means of N-acylhomoserine lactones (AHLs). Here, we report on a dual function of AHL molecules in controlling swarming behavior of Rhizobium etli, the bacterial symbiotic partner of the common bean plant. The major swarming regulator of R. etli is the cinIR QS system, which is specifically activated in swarming cells by its cognate AHL and other long-chain AHLs. This signaling role of long-chain AHLs is required for high-level expression of the cin and rai QS systems. Besides this signaling function, the long-chain AHLs also have a direct role in surface movement of swarmer cells as these molecules possess significant surface activity and induce liquid flows, known as Marangoni flows, as a result of gradients in surface tension at biologically relevant concentrations. These results point to an as-yet-undisclosed direct role of long-chain AHL molecules as biosurfactants.


Asunto(s)
4-Butirolactona/análogos & derivados , Proteínas Bacterianas/metabolismo , Movimiento , Rhizobium etli/fisiología , Transducción de Señal , Tensoactivos/metabolismo , 4-Butirolactona/metabolismo , Genes Bacterianos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación/genética , Plancton/metabolismo , Rhizobium etli/citología , Resistencia al Corte , Tensión Superficial , Viscosidad
3.
Mol Microbiol ; 55(4): 1207-21, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15686565

RESUMEN

In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.


Asunto(s)
Proteínas Bacterianas/genética , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/fisiología , Peroxidasas/genética , Rhizobium etli/fisiología , Aerobiosis , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Cinética , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Rhizobium etli/efectos de los fármacos , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...